

Sublime Solutions 500 S. Danebo Street Eugene, OR 97402 541-484-5770 Sample Type: Extracts Sample Date: 8/6/2018 Analysis Date: 8/6/2018 Report Date: 8/8/2018 Metrc Batch ID: 1A401030000697B000003561 Client's Batch ID: Harvest/Process Date:

Report ID: XBRC-HJPN

### **Potency**

Method: EPA JAOAC 2015.1 Potency Analysis Date: 8/6/2018 Potency Batch ID: CAN\_080618C

69.5%

Total THC

<LOQ

Total CBD

Samples: MHB-ZMJ-DBZ, ZTC-RNB-NMS



| Analyte   | Description                   | LOQ | RPD  | Min.                                                                                 | Max.                                                     | Avg.                         | Unit: % |
|-----------|-------------------------------|-----|------|--------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|---------|
| Δ9ΤΗС     | Delta-9 Tetrahydrocannabinol  | 1.0 | 7.92 | 66.8                                                                                 | 72.3                                                     | 69.5                         |         |
| THCA      | Tetrahydrocannabinolic acid   | 1.0 | 0.00 | ND                                                                                   | ND                                                       | ND                           |         |
| CBD       | Cannabidiol                   | 1.0 | 0.00 | <l0q< td=""><td><l0q< td=""><td><l0q< td=""><td></td></l0q<></td></l0q<></td></l0q<> | <l0q< td=""><td><l0q< td=""><td></td></l0q<></td></l0q<> | <l0q< td=""><td></td></l0q<> |         |
| CBDA      | Cannabidiolic acid            | 1.0 | 0.00 | ND                                                                                   | ND                                                       | ND                           |         |
| Δ8ΤΗC     | Delta-8 Tetrahydrocannabinol* | 1.0 | 0.00 | ND                                                                                   | ND                                                       | ND                           |         |
| THCV      | Tetrahydrocannabivarin*       | 1.0 | 0.00 | ND                                                                                   | ND                                                       | ND                           |         |
| CBG       | Cannabigerol*                 | 1.0 | 7.45 | 4.00                                                                                 | 4.31                                                     | 4.15                         | _       |
| CBGA      | Cannabigerolic acid*          | 1.0 | 0.00 | ND                                                                                   | ND                                                       | ND                           |         |
| CBC       | Cannabichromene*              | 1.0 | 5.86 | 1.19                                                                                 | 1.27                                                     | 1.23                         | •       |
| CBCA      | Cannabichromenic acid*        | 1.0 | 0.00 | ND                                                                                   | ND                                                       | ND                           |         |
| CBN       | Cannabinol                    | 1.0 | 6.32 | 1.12                                                                                 | 1.19                                                     | 1.16                         | •       |
| Total THC | Δ9THC + (THCA × 0.877)        |     | 7.92 | 66.8                                                                                 | 72.3                                                     | 69.5                         |         |
| Total CBD | CBD + (CBDA × 0.877)          |     | 0.00 | <l0q< td=""><td><l0q< td=""><td><l0q< td=""><td></td></l0q<></td></l0q<></td></l0q<> | <l0q< td=""><td><l0q< td=""><td></td></l0q<></td></l0q<> | <l0q< td=""><td></td></l0q<> |         |
| Total     |                               |     | 7.84 | 73.1                                                                                 | 79.0                                                     | 76.1                         |         |

### **Safety**

| Pesticides | Within limits | Analysis Date: 8/6/2018 | Pass 🕢 |
|------------|---------------|-------------------------|--------|
| Solvents   | Within limits | Analysis Date: 8/7/2018 | Pass 🕢 |
| Potency    | Within limits | Analysis Date: 8/6/2018 | Pass 🕢 |

lan Eustis Lab Director Aaron Troyer
Chief Science Officer





Sublime Solutions 500 S. Danebo Street Eugene, OR 97402 541-484-5770 Sample Type: Extracts Sample Date: 8/6/2018 Analysis Date: 8/6/2018 Report Date: 8/8/2018 Metrc Batch ID: 1A401030000697B000003561 Client's Batch ID: Harvest/Process Date:

Pesticides Analysis Date: 8/6/2018

Pesticides Batch ID: PST 080618A

Tebuconazole

Thiacloprid

Thiamethoxam

Trifloxystrobin

Report ID:

#### **XBRC-HJPN**

Method: EN 15662

Unit: µg/g (ppm)

Pass 🕢

Pesticides
Sample Data

| Analyte             | MHB-ZMJ-DBZ                                                                                    | ZTC-RNB-NMS                                                        | Limits | LOQ | Notes | Status |
|---------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------|-----|-------|--------|
| Abamectin           | <l0q< td=""><td><l0q< td=""><td>0.5</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.5</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.5    | 0.1 | -     | Pass   |
| Acephate            | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Acequinocyl         | <l0q< td=""><td><l0q< td=""><td>2.0</td><td>1.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>2.0</td><td>1.0</td><td>-</td><td>Pass</td></l0q<> | 2.0    | 1.0 | -     | Pass   |
| Acetamiprid         | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Aldicarb            | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Azoxystrobin        | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Bifenazate          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Bifenthrin          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Boscalid            | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Carbaryl            | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Carbofuran          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Chlorantraniliprole | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Chlorfenapyr        | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.1 | -     | Pass   |
| Chlorpyrifos        | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Clofentezine        | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Cyfluthrin          | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.5 | -     | Pass   |
| Cypermethrin        | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.1 | -     | Pass   |
| Daminozide          | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.5 | -     | Pass   |
| Diazinon            | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Dichlorvos (DDVP)   | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.5 | -     | Pass   |
| Dimethoate          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Ethoprophos         | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Etofenprox          | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Etoxazole           | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Fenoxycarb          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Fenpyroximate       | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Fipronil            | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Flonicamid          | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.1 | -     | Pass   |
| Fludioxonil         | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Hexythiazox         | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.1 | -     | Pass   |
| Imazalil            | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Imidacloprid        | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Kresoxim-methyl     | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |

<L0Q

Malathion

<L0Q

0.2 0.1

| Analyte            | MHB-ZMJ-DBZ                                                                                    | ZTC-RNB-NMS                                                        | Limits | LOQ | Notes | Status |
|--------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------|-----|-------|--------|
| Metalaxyl          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Methiocarb         | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Methomyl           | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Methyl Parathion   | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.2</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.2</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.2 | -     | Pass   |
| MGK-264            | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.2</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.2</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.2 | -     | Pass   |
| Myclobutanil       | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Naled              | <l0q< td=""><td><l0q< td=""><td>0.5</td><td>0.2</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.5</td><td>0.2</td><td>-</td><td>Pass</td></l0q<> | 0.5    | 0.2 | -     | Pass   |
| Oxamyl             | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.1 | -     | Pass   |
| Paclobutrazol      | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Permethrins        | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Phosmet            | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Piperonyl Butoxide | <l0q< td=""><td><l0q< td=""><td>2.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>2.0</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 2.0    | 0.1 | -     | Pass   |
| Prallethrin        | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Propiconazole      | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
| Propoxur           | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Pyrethrins         | <l0q< td=""><td><l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>1.0</td><td>0.5</td><td>-</td><td>Pass</td></l0q<> | 1.0    | 0.5 | -     | Pass   |
| Pyridaben          | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Spinosad           | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Spiromesifen       | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Spirotetramat      | <l0q< td=""><td><l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.2</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.2    | 0.1 | -     | Pass   |
| Spiroxamine        | <l0q< td=""><td><l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.4</td><td>0.1</td><td>-</td><td>Pass</td></l0q<> | 0.4    | 0.1 | -     | Pass   |
|                    |                                                                                                |                                                                    |        |     |       |        |

<L0Q

<L0Q

<L00

<L0Q

0.4

0.2

0.2

0.1

0.1

0.1

Pass

Pass

**Pass** 

Pass

<L0Q

<L0Q

<L00

<L0Q

Pass



Sublime Solutions 500 S. Danebo Street Eugene, OR 97402 541-484-5770 Sample Type: Extracts Sample Date: 8/6/2018 Analysis Date: 8/6/2018 Report Date: 8/8/2018 Metrc Batch ID: 1A401030000697B000003561 Client's Batch ID: Harvest/Process Date:

Report ID:

**XBRC-HJPN** 



Pesticides QC Analysis Date: 8/6/2018 Pesticides QC Batch ID: PST 080618A Method: EN 15662 Unit: μg/g (ppm)

#### Laboratory Pesticides Quality Control Results

| Method: EN 156      | 62     |     |       | Units: | ppm ( | μg/g) |          |       | Analysis date:     | 8/6/18 |     |       |        |       | Batch | D: PST_0 | 80618A |
|---------------------|--------|-----|-------|--------|-------|-------|----------|-------|--------------------|--------|-----|-------|--------|-------|-------|----------|--------|
|                     | Blank  |     |       | LCS    | LCS   | LCS%  |          |       |                    | Blank  |     |       | LCS    | LCS   | LCS%  |          |        |
| Pesticide           | Result | LOQ | Notes | Result | Spike | Rec   | Limits   | Notes | Pesticide          | Result | LOQ | Notes | Result | Spike | Rec   | Limits   | Notes  |
| Abamectin           | nd     | 0.1 |       | 0.9    | 1.0   | 85    | 50 - 150 |       | Imazalil           | nd     | 0.1 |       | 1.0    | 1.0   | 99    | 50 - 150 |        |
| Acephate            | nd     | 0.1 |       | 1.2    | 1.0   | 122   | 50 - 150 |       | Imidacloprid       | nd     | 0.1 |       | 0.9    | 1.0   | 90    | 50 - 150 |        |
| Acequinocyl         | nd     | 1.0 |       | 0.7    | 1.0   | 71    | 50 - 150 |       | Kresoxim-methyl    | nd     | 0.1 |       | 1.2    | 1.0   | 117   | 50 - 150 |        |
| Acetamiprid         | nd     | 0.1 |       | 1.0    | 1.0   | 101   | 50 - 150 |       | Malathion          | nd     | 0.1 |       | 1.2    | 1.0   | 121   | 50 - 150 |        |
| Aldicarb            | nd     | 0.1 |       | 1.0    | 1.0   | 96    | 50 - 150 |       | Metalaxyl          | nd     | 0.1 |       | 1.1    | 1.0   | 114   | 50 - 150 |        |
| Azoxystrobin        | nd     | 0.1 |       | 1.2    | 1.0   | 119   | 50 - 150 |       | Methiocarb         | nd     | 0.1 |       | 1.1    | 1.0   | 112   | 50 - 150 |        |
| Bifenthrin          | nd     | 0.1 |       | 1.0    | 1.0   | 100   | 50 - 150 |       | Methomyl           | nd     | 0.1 |       | 0.9    | 1.0   | 90    | 50 - 150 |        |
| Bifenazate          | nd     | 0.1 |       | 0.7    | 1.0   | 66    | 50 - 150 |       | Methyl Parathion   | nd     | 0.1 |       | 1.0    | 1.0   | 97    | 30 - 150 |        |
| Boscalid            | nd     | 0.1 |       | 0.6    | 1.0   | 59    | 50 - 150 |       | MGK-264            | nd     | 0.2 |       | 1.3    | 1.0   | 125   | 50 - 150 |        |
| Carbaryl            | nd     | 0.1 |       | 1.1    | 1.0   | 106   | 50 - 150 |       | Myclobutanil       | nd     | 0.1 |       | 1.1    | 1.0   | 107   | 50 - 150 |        |
| Carbofuran          | nd     | 0.1 |       | 1.0    | 1.0   | 101   | 50 - 150 |       | Naled              | nd     | 0.1 |       | 0.9    | 1.0   | 94    | 50 - 150 |        |
| Chlorantraniliprole | nd     | 0.1 |       | 1.0    | 1.0   | 104   | 50 - 150 |       | Oxamyl             | nd     | 0.1 |       | 0.9    | 1.0   | 92    | 50 - 150 |        |
| Chlorfenapyr        | nd     | 0.1 |       | 0.9    | 1.0   | 94    | 50 - 150 |       | Paclobutrazol      | nd     | 0.1 |       | 0.6    | 1.0   | 55    | 50 - 150 |        |
| Chlorpyrifos        | nd     | 0.1 |       | 1.1    | 1.0   | 113   | 50 - 150 |       | Permethrin         | nd     | 0.1 |       | 1.0    | 1.0   | 100   | 50 - 150 |        |
| Clofentezine        | nd     | 0.1 |       | 0.9    | 1.0   | 89    | 50 - 150 |       | Phosmet            | nd     | 0.1 |       | 1.1    | 1.0   | 108   | 50 - 150 |        |
| Cyfluthrin          | nd     | 0.5 |       | 1.1    | 1.0   | 114   | 50 - 150 |       | Piperonyl Butoxide | nd     | 0.1 |       | 1.1    | 1.0   | 112   | 50 - 150 |        |
| Cypermethrin        | nd     | 0.1 |       | 1.1    | 1.0   | 106   | 50 - 150 |       | Prallethrin        | nd     | 0.1 |       | 1.0    | 1.0   | 103   | 50 - 150 |        |
| Daminozide          | nd     | 0.5 |       | 0.1    | 1.0   | 6     | 10 - 150 |       | Propiconazole      | nd     | 0.1 |       | 1.1    | 1.0   | 108   | 50 - 150 |        |
| Diazinon            | nd     | 0.1 |       | 1.2    | 1.0   | 120   | 50 - 150 |       | Propoxur           | nd     | 0.1 |       | 1.0    | 1.0   | 97    | 50 - 150 |        |
| Dichlorvos          | nd     | 0.5 |       | 1.1    | 1.0   | 111   | 50 - 150 |       | Pyrethrins         | nd     | 0.2 |       | 0.9    | 1.0   | 87    | 50 - 150 |        |
| Dimethoate          | nd     | 0.1 |       | 1.0    | 1.0   | 99    | 50 - 150 |       | Pyridaben          | nd     | 0.1 |       | 1.0    | 1.0   | 103   | 50 - 150 |        |
| Ethoprophos         | nd     | 0.1 |       | 0.7    | 1.0   | 73    | 50 - 150 |       | Spinosad A kps     | nd     | 0.1 |       | 0.7    | 1.0   | 65    | 50 - 150 |        |
| Etofenprox          | nd     | 0.1 |       | 1.1    | 1.0   | 107   | 50 - 150 |       | Spinosad D kps     | nd     | 0.1 |       | 0.6    | 1.0   | 62    | 50 - 150 |        |
| Etoxazole           | nd     | 0.1 |       | 1.0    | 1.0   | 105   | 50 - 150 |       | Spiromesifen       | nd     | 0.1 |       | 1.0    | 1.0   | 97    | 50 - 150 |        |
| Fenoxycarb          | nd     | 0.1 |       | 1.1    | 1.0   | 108   | 50 - 150 |       | Spirotetramat      | nd     | 0.1 |       | 1.2    | 1.0   | 121   | 50 - 150 |        |
| Fenpyroximate       | nd     | 0.1 |       | 1.0    | 1.0   | 101   | 50 - 150 |       | Spiroxamine        | nd     | 0.1 |       | 0.6    | 1.0   | 64    | 50 - 150 |        |
| Fipronil            | nd     | 0.1 |       | 0.8    | 1.0   | 78    | 50 - 150 |       | Tebuconazole       | nd     | 0.1 |       | 1.1    | 1.0   | 112   | 50 - 150 |        |
| Flonicamid          | nd     | 0.1 |       | 0.9    | 1.0   | 94    | 50 - 150 |       | Thiacloprid        | nd     | 0.1 |       | 1.1    | 1.0   | 111   | 50 - 150 |        |
| Fludioxonil         | nd     | 0.1 |       | 0.9    | 1.0   | 93    | 50 - 150 |       | Thiamethoxam       | nd     | 0.1 |       | 0.9    | 1.0   | 89    | 50 - 150 |        |
| Hexythiazox         | nd     | 0.1 |       | 1.0    | 1.0   | 99    | 50 - 150 |       | Trifloxystrobin    | nd     | 0.1 |       | 1.1    | 1.0   | 105   | 50 - 150 |        |
|                     |        |     |       |        |       |       |          |       |                    |        |     |       |        |       |       |          |        |



Sublime Solutions 500 S. Danebo Street Eugene, OR 97402 541-484-5770 Sample Type: Extracts Sample Date: 8/6/2018 Analysis Date: 8/6/2018 Report Date: 8/8/2018 Metrc Batch ID: 1A401030000697B000003561 Client's Batch ID: Harvest/Process Date:

Solvents Analysis Date: 8/7/2018

Solvents Batch ID: RES 080718A

Report ID:

Method: EPA 5021A

Unit: µg/g (ppm)

### **XBRC-HJPN**

Pass 🕢

|          | Residual Solvents Sample Data |
|----------|-------------------------------|
| <b>W</b> | Sample Data                   |
|          |                               |

| Sample Data              |                                                                                                                 |                                                                                     |         |        |       |       |        |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|--------|-------|-------|--------|
| Analyte                  | MHB-ZMJ-DBZ                                                                                                     | ZTC-RNB-NMS                                                                         | RPD (%) | Limits | LOQ   | Notes | Status |
| 1,4-Dioxane              | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>380.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>380.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 380.0  | 50.0  | -     | Pass   |
| 2-Butanol                | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| 2-Ethoxyethanol          | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>160.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>160.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 160.0  | 50.0  | -     | Pass   |
| Acetone                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Acetonitrile             | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>410.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>410.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 410.0  | 50.0  | -     | Pass   |
| Benzene                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>2.0</td><td>2.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>     | <l0q< td=""><td>0.00</td><td>2.0</td><td>2.0</td><td>-</td><td>Pass</td></l0q<>     | 0.00    | 2.0    | 2.0   | -     | Pass   |
| Butanes                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Cumene                   | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>70.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>   | <l0q< td=""><td>0.00</td><td>70.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>   | 0.00    | 70.0   | 50.0  | -     | Pass   |
| Cyclohexane              | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>3880.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>3880.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 3880.0 | 50.0  | -     | Pass   |
| Ethyl Acetate            | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Ethyl Ether              | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Ethylene Glycol          | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>620.0</td><td>250.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>620.0</td><td>250.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 620.0  | 250.0 | -     | Pass   |
| Ethylene Oxide           | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>50.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>   | <l0q< td=""><td>0.00</td><td>50.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>   | 0.00    | 50.0   | 50.0  | -     | Pass   |
| Heptane                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Hexanes                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>290.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>290.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 290.0  | 50.0  | -     | Pass   |
| Isopropanol (2-Propanol) | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Isopropyl Acetate        | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Methanol                 | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>3000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>3000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 3000.0 | 50.0  | -     | Pass   |
| Dichloromethane          | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>600.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>600.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 600.0  | 50.0  | -     | Pass   |
| Pentanes                 | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Propane                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>5000.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 5000.0 | 50.0  | -     | Pass   |
| Tetrahydrofuran          | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>720.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>720.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 720.0  | 50.0  | -     | Pass   |
| Toluene                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>890.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<>  | <l0q< td=""><td>0.00</td><td>890.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<>  | 0.00    | 890.0  | 50.0  | -     | Pass   |
| Xylenes                  | <l0q< td=""><td><l0q< td=""><td>0.00</td><td>2170.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<></td></l0q<> | <l0q< td=""><td>0.00</td><td>2170.0</td><td>50.0</td><td>-</td><td>Pass</td></l0q<> | 0.00    | 2170.0 | 50.0  | -     | Pass   |



Sublime Solutions 500 S. Danebo Street Eugene, OR 97402 541-484-5770 Sample Type: Extracts Sample Date: 8/6/2018 Analysis Date: 8/6/2018 Report Date: 8/8/2018 Metrc Batch ID: 1A401030000697B000003561 Client's Batch ID: Harvest/Process Date:

Report ID:

**XBRC-HJPN** 

Residual Solvents
Quality Control Data

Solvents QC Analysis Date: 8/7/2018 Solvents QC Batch ID: RES 080718A Method: EPA 5021A Unit: μg/g (ppm)

Laboratory Residual Solvent Quality Control Results

| Method: EPA 5021A          |              |             | Units: ug/mL |            |           |          |          | Batch ID: RES_08071 |
|----------------------------|--------------|-------------|--------------|------------|-----------|----------|----------|---------------------|
| Matrix Blank / LCS Results |              |             |              |            |           |          |          |                     |
| Analyte                    | Blank Result | Blank Limit | Notes        | LCS Result | LCS Spike | LCS% Rec | Limits   | Notes               |
| 1,4-Dioxane                | < LOQ        | 50          |              | 930        | 1000      | 93       | 70 - 130 |                     |
| 2-Butanol                  | < LOQ        | 50          |              | 894        | 1000      | 89       | 70 - 130 |                     |
| 2-Ethoxyethanol            | < LOQ        | 50          |              | 1021       | 1000      | 102      | 70 - 130 |                     |
| Acetone                    | < LOQ        | 50          |              | 849        | 1000      | 85       | 70 - 130 |                     |
| Acetonitrile               | < LOQ        | 50          |              | 869        | 1000      | 87       | 70 - 130 |                     |
| Benzene                    | < LOQ        | 2           |              | 17         | 20        | 85       | 70 - 130 |                     |
| Butanes                    |              |             |              |            |           |          |          |                     |
| Butane                     | < LOQ        | 50          |              | 816        | 1000      | 82       | 70 - 130 |                     |
| Isobutane                  | < LOQ        | 50          |              | 834        | 1000      | 83       | 70 - 130 |                     |
| Cyclohexane                | < LOQ        | 50          |              | 872        | 1000      | 87       | 70 - 130 |                     |
| Ethyl acetate              | < LOQ        | 50          |              | 857        | 1000      | 86       | 70 - 130 |                     |
| Ethyl ether                | < LOQ        | 50          |              | 898        | 1000      | 90       | 70 - 130 |                     |
| Ethylbenzene               | < LOQ        | 50          |              | 950        | 1000      | 95       | 70 - 130 |                     |
| Ethylene glycol            | < LOQ        | 250         |              | 1257       | 1000      | 126      | 70 - 130 |                     |
| Ethylene oxide             | < LOQ        | 50          |              | 807        | 1000      | 81       | 70 - 130 |                     |
| Heptane                    | < LOQ        | 50          |              | 841        | 1000      | 84       | 70 - 130 |                     |
| Hexanes                    |              |             |              |            |           |          |          |                     |
| n-Hexane                   | < LOQ        | 50          |              | 854        | 1000      | 85       | 70 - 130 |                     |
| 2-Methylpentane            | < LOQ        | 50          |              | 894        | 1000      | 89       | 70 - 130 |                     |
| 3-Methylpentane            | < LOQ        | 50          |              | 873        | 1000      | 87       | 70 - 130 |                     |
| 2,2-Dimethylbutane         | < LOQ        | 50          |              | 866        | 1000      | 87       | 70 - 130 |                     |
| 2,3-Dimethylbutane         | < LOQ        | 50          |              | 944        | 1000      | 94       | 70 - 130 |                     |
| Isopropanol                | < LOQ        | 50          |              | 902        | 1000      | 90       | 70 - 130 |                     |
| Isopropyl acetate          | < LOQ        | 50          |              | 880        | 1000      | 88       | 70 - 130 |                     |
| Cumene                     | < LOQ        | 50          |              | 935        | 1000      | 94       | 70 - 130 |                     |
| Methanol                   | < LOQ        | 50          |              | 927        | 1000      | 93       | 70 - 130 |                     |
| Dichloromethane            | < LOQ        | 50          |              | 870        | 1000      | 87       | 70 - 130 |                     |
| Pentanes                   |              |             |              |            |           |          |          |                     |
| Pentane                    | < LOQ        | 50          |              | 831        | 1000      | 83       | 70 - 130 |                     |
| Isopentane                 | < LOQ        | 50          |              | 827        | 1000      | 83       | 70 - 130 |                     |
| Neopentane                 | < LOQ        | 50          |              | 877        | 1000      | 88       | 70 - 130 |                     |
| Propane                    | < LOQ        | 50          |              | 845        | 1000      | 84       | 70 - 130 |                     |
| Tetrahydrofuran            | < LOQ        | 50          |              | 852        | 1000      | 85       | 70 - 130 |                     |
| Toluene                    | < LOQ        | 50          |              | 920        | 1000      | 92       | 70 - 130 |                     |
| Xylenes                    |              |             |              |            |           |          |          |                     |
| m-Xylene                   | < LOQ        | 50          |              | 991        | 1000      | 99       | 70 - 130 |                     |
| o/p-Xylene                 | < LOQ        | 50          |              | 947        | 1000      | 95       | 70 - 130 |                     |
|                            |              |             |              |            |           |          |          |                     |



Sublime Solutions 500 S. Danebo Street Eugene, OR 97402 541-484-5770 Sample Type: Extracts Sample Date: 8/6/2018 Analysis Date: 8/6/2018 Report Date: 8/8/2018 Metrc Batch ID: 1A401030000697B000003561 Client's Batch ID: Harvest/Process Date:

Report ID: XBRC-HJPN

### **Qualifier Flag Descriptions**

| J   | Reported result is an estimate - the value is less than the minimum calibration level but greater than the estimated detection limit (EDL) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| U   | The analyte was not detected in the sample at the estimated detection limit (EDL)                                                          |
| E   | Exceeds calibration range                                                                                                                  |
| D   | Dilution data - result was obtained from the analysis of a dilution                                                                        |
| В   | Analyte found in sample and associated blank                                                                                               |
| С   | Co-eluting compound                                                                                                                        |
| R   | Relative Percent Difference (RPD) outside control limits                                                                                   |
| NR  | Analyte not reported because of problems in sample preparation or analysis                                                                 |
| ND  | Non-Detect                                                                                                                                 |
| X   | Results from reinjection/repeat/re-column data                                                                                             |
| EMC | Estimated maximum possible concentration - indicates that a peak is detected but did not meet the method required criteria                 |
| М   | Manual integration                                                                                                                         |
| PS  | Peaks split                                                                                                                                |
| НВ  | Control acceptance criteria are exceeded high and the associated sample is below the detection limit                                       |
| LB  | Control acceptance criteria are exceeded low and the associated sample exceeds the regulatory limit                                        |
| ME  | Marginal Exceedance                                                                                                                        |
| LR  | Low Recovery Analyte                                                                                                                       |
| LOQ | Limit of Quantitation                                                                                                                      |
|     |                                                                                                                                            |